LCT + 树剖 + 线段树。
由于每个操作都是从一个点染到根,那么就可以很清楚的知道:颜色种数 = 颜色段数。 接着我们可以知道两个点\(x,y\)的颜色种数其实就是\(x\)到根的颜色种数 + \(y\)到根的颜色种数 - \(2lca(x,y)\)到根的颜色种数 + 1。 将一个点染色时,同时会不可避免的断掉一些颜色段,使断掉的部分子树的答案会加1。 我们用\(\text{LCT}\)来维护这些链。 通过把图画出来可以知道: 增加1的子树其实是access时原来的右儿子, 而减少1其实是access时像现在的右儿子。 之后就可以做了。#include#define _swap(a,b) (a ^= b ^= a ^= b)const int maxn = 1e5 + 10;class FastIO { private: #define tn(x) (x << 1) + (x << 3) #define D isdigit(c = getchar()) char c; int T, S[10000]; public: template inline void read(Tp& x) { x = 0; while(!D); while(x = tn(x) + (c & 15),D); } template inline void write(Tp x) { while(S[++T] = x % 10 + 48,x /= 10); while(T) putchar(S[T--]); } template inline void read(Tp& x,Ar&... y) { read(x); read(y...); } template inline void writeln(const Tp& x) { write(x); putchar('\n'); }} I;inline void cmax(int& x,int y) { if(x < y) x = y; }inline int _max(int x,int y) { return x > y ? x : y; }int n, m, i, j, k, cnte, tot;int fa[maxn], id[maxn], dep[maxn], sz[maxn], dfn[maxn], top[maxn], hson[maxn];struct edge { int v; edge* nxt;} pool[maxn << 1], *head[maxn], *cur = pool;inline void adde(int u,int v) { edge* p = cur++; p -> v = v; p -> nxt = head[u]; head[u] = p;}void dfs1(int u,int pa) { dep[u] = dep[pa] + 1; fa[u] = pa; sz[u] = 1; for(edge* p = head[u];p;p = p -> nxt) { int v = p -> v; if(v == pa) continue; dfs1(v,u); sz[u] += sz[v]; if(sz[v] > sz[ hson[u] ]) hson[u] = v; }}void dfs2(int u,int up) { top[u] = up; dfn[u] = ++tot; id[tot] = u; if(hson[u]) dfs2(hson[u],up); for(edge* p = head[u];p;p = p -> nxt) { int v = p -> v; if(v == fa[u] || v == hson[u]) continue; dfs2(v,v); }}inline int Glca(int u,int v) { while(top[u] != top[v]) { if(dep[ top[u] ] < dep[ top[v] ]) _swap(u,v); u = fa[ top[u] ]; } return dep[u] < dep[v] ? u : v;}class Segment_Tree { private: int mx[maxn << 2], tag[maxn << 2]; public: inline void push_up(int u) { mx[u] = _max(mx[u << 1],mx[u << 1 | 1]); } inline void push_down(int u) { if(!tag[u]) return; mx[u << 1] += tag[u]; mx[u << 1 | 1] += tag[u]; tag[u << 1] += tag[u]; tag[u << 1 | 1] += tag[u]; tag[u] = 0; } void build(int l,int r,int u) { if(l == r) return mx[u] = dep[ id[l] ], void(); int mid = (l + r) >> 1; build(l,mid,u << 1); build(mid + 1,r,u << 1 | 1); push_up(u); } int query(int ql,int qr,int l,int r,int u) { //printf("%d %d %d %d %d %d\n",ql,qr,l,r,u,mx[u]); if(ql <= l && r <= qr) return mx[u]; push_down(u); int res = 0, mid = (l + r) >> 1; if(ql <= mid) cmax(res,query(ql,qr,l,mid,u << 1)); if(mid < qr) cmax(res,query(ql,qr,mid + 1,r,u << 1 | 1)); return res; } void modify(int ml,int mr,int l,int r,int u,int x) { if(ml <= l && r <= mr) return tag[u] += x, mx[u] += x, void(); push_down(u); int mid = (l + r) >> 1; if(ml <= mid) modify(ml,mr,l,mid,u << 1,x); if(mid < mr) modify(ml,mr,mid + 1,r,u << 1 | 1,x); push_up(u); return; }} segt;class Link_Cut_Tree { private: int ch[maxn][2]; public: int fa[maxn]; inline bool nroot(int u) { return ch[ fa[u] ][0] == u || ch[ fa[u] ][1] == u; } inline int ident(int u) { return ch[ fa[u] ][1] == u; } inline void rotate(int u) { int oldf = fa[u], oldgf = fa[oldf], whi = ident(u); if(nroot(oldf)) ch[oldgf][ident(oldf)] = u; ch[oldf][whi] = ch[u][whi ^ 1]; fa[ ch[oldf][whi] ] = oldf; ch[u][whi ^ 1] = oldf; fa[oldf] = u; fa[u] = oldgf; } inline void splay(int u) { for(int p = fa[u];nroot(u);rotate(u),p = fa[u]) { if(nroot(p)) rotate(ident(p) == ident(u) ? p : u); } } inline int find_root(int x) { while(ch[x][0]) x = ch[x][0]; return x; } inline void access(int x) { for(int y = 0, z;x;x = fa[y = x]) { splay(x); if(ch[x][1]) z = find_root(ch[x][1]), segt.modify(dfn[z],dfn[z] + sz[z] - 1,1,n,1,1); if(ch[x][1] = y) z = find_root(ch[x][1]), segt.modify(dfn[z],dfn[z] + sz[z] - 1,1,n,1,-1); } }} lct;int main() { I.read(n,m); for(int i = 1, u, v;i < n;i++) { I.read(u,v); adde(u,v); adde(v,u); } dfs1(1,0); dfs2(1,1); for(int i = 1;i <= n;i++) lct.fa[i] = fa[i]; segt.build(1,n,1); for(int op, x, y;m;m--) { I.read(op,x); if(op == 1) lct.access(x); else if(op == 2) { I.read(y); int z = Glca(x,y); printf("%d\n",segt.query(dfn[x],dfn[x],1,n,1) + segt.query(dfn[y],dfn[y],1,n,1) - 2 * segt.query(dfn[z],dfn[z],1,n,1) + 1); } else printf("%d\n",segt.query(dfn[x],dfn[x] + sz[x] - 1,1,n,1)); } return 0;}